Coenogonium moniliforme (Coenogoniaceae, Lichenized Ascomycota) New to Japan, with Taxonomic Notes of the Photobiont in Culture

Yoshihito OHMURAa,*, Aya MIZOBUCHIB, Shinji HANDAb and Robert LÜCKINGc

aDepartment of Botany, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, 305-0005 JAPAN
bHiroshima Environment and Health Association, 9-1, Hirosekita-machi, Naka-ku, Hiroshima, 730-8631 JAPAN
cBotanischer Garten und Botanisches Museum Berlin, 6-8, Königin-Luise Strasse, 14195 Berlin, GERMANY
*Correspondence author: ohmura-y@kahaku.go.jp

(Accepted on September 7, 2015)

Coenogonium moniliforme Tuck. is new to Japan. Although this species has been recorded as corticolous and foliicolous, it was found on rock for the first time. A key to Japanese taxa of Coenogonium is also provided.

Key words: Distribution, lichens, saxicolous, Trentepohlia monile.

The genus Coenogonium Ehrenb. (Coenogoniaceae, Ascomycota), consisting of ca. 85 species, is mainly distributed in tropical and subtropical regions (Rivas Plata et al. 2006, Lücking 2008, Ferraro and Michlig 2013). This genus is characterized by biatorine apothecia with a yellow to orange or brown disc, a paraplectenchymatous excipulum, unitunicate asci with entirely thin walls, uniseptate (rarely simple), colorless ascospores, and a trentepohlioid photobiont (Rivas Plata et al. 2006, Lücking 2008).

In Japan, nine species of Coenogonium have been recorded before the present study (Kurokawa and Kashiwadani 2006, Lücking 2008). As part of our biotic studies of Japanese lichens, an interesting Coenogonium species, C. moniliforme Tuck., was collected from Kyushu in southern Japan.

The purpose of this study is to show the features of C. moniliforme and its photobiont based on the Japanese material. A key to Japanese species of Coenogonium is also provided.

Material and Methods

Field investigations were carried out in 2015. Voucher lichen specimens are housed in the National Museum of Nature and Science (TNS), Tsukuba, Japan, and the cultures of the photobiont isolated from the lichen samples are maintained at Hiroshima Environment and Health Association, Hiroshima, Japan.

Morphological observations of lichen specimens were made using a dissecting microscope (Olympus SZX16) and a differential interference contrast microscope (Olympus BX51). Anatomical examination was undertaken using hand-cut sections mounted in GAW (glycerin : ethanol : water, 1:1:1). Statistical
measurements are given as (minimum‒)average ± standard deviation(‒maximum); \(n \) = number of measurements.

For isolation of the lichen photobiont, a sample of lichen thallus was cut into segments using sterilized tweezers, and the segments were spread onto 1.0% agar plate. The cleaned segments were then transferred onto 1.5% agar plates of modified Bold’s basal medium (Bischoff and Bold 1963). This process was repeated to counter fungal or bacterial contamination. The algal strains were cultivated for one month under the following conditions: 22 ± 1 °C, 50 µmol/m²/s, and 12:12 hr of light/dark cycle. Light microscopy was carried out using a Nomarski differential interference microscope (Nikon Eclipse E600).

Results and Discussion

Coenogonium moniliforme Tuck. in Proc. Amer. Acad. Arts & Sci. 5: 416 (1862). [Fig. 1]

Type: CUBA. On bark, C. Wright 172 (FH–holotype, not seen; BM!, H!, M!, S!– isotypes).

Biatorinopsis torulosa Müll. Arg. in Revue Mycol. 10: 114 (1888). Type: PARAGUAY. Balansa 4165 (G–holotype!).

Coenogonium (Gyalecta) haitiensis G. Merr., nom. inval. (unpublished herbarium name). Original material: HAITI. Leonard 9965 (BM!, S-L2159!).

Morphological features of the Japanese material (Fig. 1A) agree with the protologue and
the descriptions provided by Uyenco (1963), Thor and Vězda (1984) and Lücking (1992, 1999, 2008), but no pycnidia were found. The statistical values of morphological features for the Japanese material agreed with the range of the known sizes as follows: apothecia up to 0.45 mm diameter; ascospores (8.0–)11.5 ± 2.0(–14.0) × (3.0–)3.8 ± 0.5(–5.0) µm (n = 50).

The photobiont was identified as *Trentepohlia monile* De Wild. (De Wildeman 1888, 1891), after the observations of both lichenized and culture states. The features of Japanese material agree with the protologue and the description of *Trentepohlia monile* provided by Chowdary (1963): i.e., the cottony algal mass is formed by entangled green to orange filaments which are erect, richly branched and deeply constricted at the segments, to form a distinctive moniliform shape; cells nearly spherical, 16–22 µm in diam. in lichenized state (Fig. 1B), and elliptical to barrel-shaped, 20–30 × 12–16 µm in culture state (Fig. 1C); cell walls smooth on the surface, <1.0 µm thick, uniformly thickened for the whole cell; sporangia borne intercalary between vegetative cells or laterally on a vegetative cell, sessile, green to yellowish-brown, spherical, 27–30 µm in diam.; biflagellate swarmers ellipsoidal, slightly flattened, 6–7 × 8–10 µm.

Trentepohlia monile is currently being treated as synonym of *T. rigidula* (J. Müller) Hariot (Hariot 1889, Cribb 1958, Guiry and Guiry 2015). However, the latter was originally described as a lichen fungus under the name *Coenogonium rigidulum* Müll. Arg. (Müller 1882) and hence, since the original material is lichenized and has been identified with the name *C. implexum* Nyl. (Nylander 1862), the name *C. rigidulum* refers to a lichen fungus and not to the photobiont and hence cannot be used in the genus *Trentepohlia*. *Trentepohlia monile* is usually treated as *T. monilia* in the literature but was originally described with the epithet *monile* (De Wildemann 1888: 140). Since the original epithet is grammatically correct, representing a noun in apposition meaning “neckless”, it cannot be changed and has to be used in its original form.

Coenogonium moniliforme has been recorded as corticolous and foliicolous (e.g., Santesson 1952, Uyenco 1963, Thor and Vězda 1984, Lücking 2008), but Japanese material was found on a stone wall at 40 m elevation in Kyushu with a warm-temperate climate (Fig. 1D). Because of the tiny apothecia and the inconspicuous algal-based thallus, it is easily overlooked in the field. This species has been rarely collected from North and South America, Africa, Australia and Asia (Nepal) (see Thor and Vězda 1984, Lücking 2008), but further careful investigation would no doubt expand its distribution.

A key to Japanese taxa of *Coenogonium*

1. Thallus dominated by the photobiont, filamentous, felt-like or pilose with short, upright algal threads ... 2
2. Photobiont appressed and glabrous, crustose 4
3. Photobiont cells distinctly moniliform-barrel-shaped [Fig. 1] *C. moniliforme* Tuck.
4. Photobiont cells rectangular-cylindrical 3
5. Apothecia distinctly stipitate; ascospores simple, 5–8 × 2–3 µm *C. leprieurii* (Mont.) Nyl.
6. Apothecia sessile; ascospores 1-septate, 8–11 × 3–4 µm *C. nigromaculatum* Kurok.
7. Apothecial margin denticulate *C. kawanae* (H. Harada & Vězda) H. Harada & Lumbsch
8. Apothecial margin smooth ... 5
9. Apothecia small to medium-sized (<0.5 mm in diam.) .. 6
10. Apothecia medium-sized to large (>0.5 mm in diam.) .. 8
11. Ascospores large (18–25 × 3–4 µm)
12. *C. wrightii* (Vězda) H. Harada & Lumbsch
13. Ascospores small (6–12 × 2.5–4.5 µm) 7
14. Foliicolous (rarely corticolous); apothecia up to 0.3 mm in diam.; disc pale wax-colored; ascospores 6–10 × 2.5–3.5 µm; conidia

Specimen examined: JAPAN. Kyushu: Prov. Chikuze (Pref. Fukuoka): Tani, Chuo-ku, Fukuoka-city (33°34′26″N, 130°23′06″E), on stone wall, ca. 40 m elev., 20 March 2015, S. Handa & al. 3084 (TNS); ditto, 11 June 2015, Y. Ohmura 10563 & A. Mizobuchi (TNS).
1-septate, 12‒18 × 2‒2.5 µm C. dilucidum (Kremp.) Kalb & Lücking
7. Corticolous; apothecia up to 0.5 mm in diam.; disc pale yellow to orange; ascospores 9‒15 × 2‒4.5 µm; conidia non-septate, 6‒8 × 1.8‒2.6 µm .. C. pineti (Ach.) Lücking & Lumbsch
8. Apothecia medium-sized, 0.3‒0.8 mm diam.; conidia 1-septate, 12‒18 × 2‒3 µm .. C. subluteum (Rehm) Lücking & Lumbsch
8. Apothecia large, (0.5‒)0.8‒2 mm diam.; conidia non-septate, 2.5‒5 × 1.5‒2 µm 9
9. Apothecia 0.5‒2 mm diam., 200‒300 µm high; disc orange-yellow to orange; ascospores 7‒11 × 2.5‒3.5 µm; conidia 3‒5 × 1.5‒2 µm C. luteum (Dicks.) Kalb & Lücking
9. Apothecia 0.4‒1 mm diam., 130‒180 µm high; disc bright yellow; ascospores 6‒9 × 1.8‒2.5 µm; conidia 2.5‒3.5 × 1.7‒2 µm C. geralense (Henn.) Lücking

This study was partly supported by JSPS KAKENHI (Grant nos. 24300314 and 24657042) for YO.

References
子器も小さく淡黄色で目立たないため、世界での採集事例も多くない。これまでに生葉上および樹皮からのみ採集されてきたが、今回世界で初めて岩上に生育していることを確認した。ジュズスミレモモドキの地衣体はフェルト状。子器直径は最大0.45 mm、子嚢胞子の大きさ8–14 × 3–5 μm。共生藻はスミレモ科の Trentepohlia monileジュズスミレモ（新称）であった。藻体は細胞が数珠状に連なり、地衣状態では細胞はほぼ球形で径16–22 μm、培養状態では長円形から樽型で20–30 × 12–16 μmであった。ジュズスミレモ共生藻を持つダイダイサラゴケ属地衣類は本種のみであり、近縁種から容易に区別できる。

(*国立科学博物館植物研究部,
広島県環境保健協会,
ドイツ・ベルリン植物園)